

procedure, covering n -port measurements, affected by leakage errors," *IEEE Trans. Microwave Theory Tech* vol. MTT-25, pp. 1100-1115, Dec. 1977

[4] R. A. Speciale, "Projective matrix transformations in microwave network theory," in *1981 IEEE MTT-S Int. Microwave Symp. Dig. Tech. Papers*, (Los Angeles, CA), June 15-19, 1981, pp. 510-512.

[5] R. A. Speciale, "Derivation of the generalized scattering parameter renormalization transformation," presented at Fall 1979 14th Workshop Meet. Automated Radio Frequency Tech. Group IEEE-MTT (ARFTG), (Los Angeles, CA), Nov. 11-12, 1979

[6] D. Woods, "Multiport-network analysis by matrix renormalization employing voltage-wave S-parameters with complex normalization," *Proc. Inst. Elec. Eng.*, vol. 124, pp. 198-204, Mar. 1977.

elements. These formulas include both the formula of Niclas and of Iversen [1, [9]]. The formulas have been used in the lossless case to develop an amplifier with simultaneous noise and power input match.

Reply² by Karl B. Niclas³

While I was aware of the existence of Mr. Engberg's paper, "Simultaneous Input Power Match and Noise Optimization using Feedback" [2], I was not able to secure a copy and consequently was unaware of its contents until his comments arrived. However, after careful study of his publication, I have to disagree with his conclusion that the information in my short paper contains only little new information outside of the approximation formulas. It must have escaped Mr. Engberg that his formulas for the equivalent noise parameters of the parallel feedback amplifier (3) in [2] deviate from mine (4) in [1] and only for the special case of $Y_B = 0$ ($Y_{FB} = 0$) was I able to find agreement for the parameters R'_n and Y'_y (R'_n and Y'_{cor}). Since no derivations are presented in Mr. Engberg's paper, I am not in a position to explain the discrepancies. It should be noted, however, that results calculated with formulas given in my paper are in perfect agreement with those computed with the aid of Compact which is based on Hillbrand's and Russer's correlation matrix [3], [4].

REFERENCES

[1] Karl B. Niclas, "The exact noise figure of amplifiers with parallel feedback and lossy matching circuits," *IEEE Trans. Microwave Theory Tech* vol. MTT-30, pp. 832-34, May 1982.

[2] Jakob Engberg, "Simultaneous input power match and noise optimization using feedback," in *Conf. Proc. 4th European Microwave Conf.* (Montreux, Switzerland), September 1974, pp. 385-389.

[3] H. Hillbrand and P. H. Russer, "An efficient method to computer-aided noise analysis of linear amplifier networks," *IEEE Trans. Circuits Syst.*, vol. CAS-23, pp. 235-238, Apr. 1976

[4] Private conversation with C. Holmes of Compact Engineering, Palo Alto, CA.

²Manuscript received July 25, 1982

³The author is with the Devices Group, Watkins-Johnson Company, 3333 Hillview Ave., Stanford Industrial Park, Palo Alto, CA 94304

Comment on "The Exact Noise Figure of Amplifiers with Parallel Feedback and Lossy Matching Circuit"

JAKOB ENGBERG

I found the short paper of K. B. Niclas "The Exact Noise Figure of Amplifiers with Parallel Feedback and Lossy Matching Circuits"¹ very interesting, but, except for the approximated formulas, it contained only little new information, since my paper "Simultaneous Input Power Match and Noise Optimization using Feedback" [2] included most of the formulas. In that paper, I have developed a general form of noise parameters of a three-port with combinations of parallel and series feedback (or imbedding)

Manuscript received July 8, 1982; revised August 9, 1982.

The author is with the Institut for Elektroniske Systemer, Aalborg Universitetscenter, 9000 Aalborg, Denmark.

¹K. B. Niclas, *IEEE Microwave Theory Tech.*, vol. MTT-30, pp. 832-834, May 1982.